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SUMMARY 

The classical potential formulation of inviscid transonic flows is modified to account for non-isentropic 
effects. The density is determined in terms ofthe speed as well as the pressure, which in turn is calculated from a 
second-order mixed-type equation derived via differentiating the momentum equations. 

The present model differs in general from the exact inviscid Euler equations since the flow is assumed 
irrotational. On the other hand, since the shocks are not isentropic, they are weaker and are placed further 
upstream compared to the classical potential solution. Furthermore, the streamline leaving the aerofoil does 
not necessarily bisect the trailing edge. 

Results for the present conservative calculations are presented for non-lifting and lifting aerofoils at 
subsonic and transonic speeds and compared to potential and Euler solutions. 
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INTRODUCTION 

The potential formulation has proved to be a useful tool for the design and analysis of transonic 
flows around practical aerodynamic configurations. There are, however, severe limitations since 
the flow is assumed to be irrotational and isentropic. 

On the other hand, the exact inviscid model described by the Euler equations, which account for 
vorticity and non-isentropic effects, is more Complicated and definitely more expensive to solve. 
For example, in three-dimensional calculations, a system of first-order equations in five variables 
has to be solved instead of a second-order equation in one variable for the potential. The boundary 
conditions are also more complicated. Despite the recent concentrated activity to develop efficient 
iterative procedures and accurate discretization techniques for the Euler equations, potential 
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calculations, when valid, are still more attractive in terms of both efficiency and accuracy. 
Therefore, there is an incentive to extend the range of validity of the potential formulation. 

In this paper, a new potential model is presented where the flow is not necessarily isentropic. To 
calculate the non-isentropic losses, a second order mixed-type equation for the pressure is solved. 
The density i s  then determined in terms of both the pressure and the speed. Thus, the additional 
expenses are relatively minor. 

Moreover, unlike the classical potential, the present model is useful for internal flows with 
prescribed back pressure, and in general the results are closer to the Euler solution. 

In the following sections, previous methods where the entropy is explicitly calculated in terms of 
the Mach number upstream of the shock, are briefly reviewed and the details of the present method, 
where shocks are automatically captured, are presented. Numerical results are compared to 
potential and Euler solutions. 

TRANSONIC SMALL DISTURBANCE EQUATION 

For the sake of demonstrating the concept of the present model let us first discuss the small 
perturbation problems. Consider the expansion of the flux in terms of the velocity perturbation, 
assuming isentropic flow: 

If the last term is approximated by $M2,u2(y + 1) the von Karman small disturbance equation 
reads 

Similarly, the momentum is given by 

and hence across an isentropic shock, assuming mass is conserved, the following relation is valid: 

;I > denoting the jump in a quantity. 

shock.’.2 
The drag in the small disturbance calculation can be represented by the integral of M along the 

The jump condition admitted by a normal isentropic shock is simply 

(1 - M2,) - M i ( ?  + 1)( 4,) = 0 ( 5 )  

where (4,) = 4(4,, + 
of the shock. In Reference 3,  equation (5) is rewritten in the form: 

is the average of the perturbation velocities upstream and downstream 

1 + $bXU + cp,, = (5’) 
It is clear that (5’) is an approximation of the Prandtl relation where the second order ( T ~ / ~ )  term 

4,,4,, is neglected. It is also shown in Reference 3 that the vorticity w is indeed of higher order 
(w = O ( T ” ~ ) ) ;  hence it is feasible to account for the entropy only and neglect the vorticity. A 
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shock-fitting procedure is used, where the shock is assumed as an internal boundary with a 
Neumann boundary condition based on the Prandtl relation, i.e. 

dx,=-- a* 1. 

In this calculation, the momentum is conserved and the drag is calculated in terms of the jump in 
entropy [s]: 

In Reference 4, it is shown that imposing (6) across the shock is equivalent to modifying the flux 
according to 

f d  - f” = ( A S / R ) f d *  (8) 
Therefore the shock is weakened due to a source distribution of strength proportional to the 

jump in entropy. 
The purpose of the present work is to replace these shock fitting methods with a conservative 

calculation procedure, where shocks are numerically captured. The flux, including entropy effects, 
can be approximated by 

p(1 + ~ ) = e - ’ ” ’ ~ f 1  +(1 - M 2 , ) ~ - 3 M 2 m u ’ [ 3 - ( 2 - ~ ) M 2 , ]  

+ M 2 , [ - ~ + ( 2 - y ) M ~ - ( 2 - - y ) ( 3 - 2 y ) M $ ~ ~ / 6 ] } +  * . .  (9) 
The momentum becomes 

7 + ( 1  -M2,)+1 - 3 ( 2 - y ) M & ] M $ u 3  + ... (10) I 1 U 2  IYM, p(1 + u)u + p = 

Eliminating e-’’lR in expression (9) using (10) leads to a modified small disturbance equation of 
the following conservative form: 

E(1 -M2, )4 , - fM2,C(y  + 1)+2(1 -M2,)}4: + f M 2 , ( y +  l)+;ll,+4,,=0 (1 1) 

Strictly speaking, other terms of the expansion of the y-component of the flux should be included 
for consistency, for example d;, and (4y+x)y are of the same order as 42, i.e. (T~). Nevertheless 
equation (1 1) represents an improvement over the classical equation (2). In particular the jump 
condition admitted by the weak solution of equation (1 1) is a second-order approximation of the 
Prandtl relation. In addition, equation (1 1) changes type (elliptic to hyperbolic) at a speed closer to 
the exact sonic condition. 

An equivalent form of equation (1 1) is 

F ,  + cb,, = 0, 
where 

F = f(1 - +A 
.f = (1 - M i ) &  - $M2,(y + l)+$ 

Obviously F is no longer a quadratic function of +x since the shock is no longer isentropic and 
equations (1 1) and (12) do not admit a similarity solution. In a calculation based on a conservative 
difference approximation of equation (12), the need for evaluating entropy production across a 
shock would be eliminated. These concepts are extended to the full potential equation in the 
following sections. 
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TRANSONIC FULL POTENTIAL EQUATION 

Quasi-one-dimensional Jows 

continuity, momentum and energy for this Quasi-ID problem are 
Consider internal flows in a nozzle with a variable area distribution. The governing equations of 

represents the artificial compressibility necessary for the calculations of transonic flows: 

' I  0,1---,1-- 1 
M 2  M:-l 

There is no loss of generality, in the 1-D case, to assume that, in terms of a potential (CD) 

U = ox, (174 

(PA@,), = 0. (17b) 

and hence equation (1 3 )  becomes 

Because vorticity does not exist for one-dimensional flows, the present model is exact. The 
pressure is obtained by satisfying a second-order form of the momentum equation. Assuming the 
potential, 0, to be defined at the nodes, and the pressure, p ,  density, p, and the speed, u, to be defined 
at the mid-cells, a central difference approximation of equation (14) at node j reads: (see 
Figure l(a)). 

( 1  8) 1 M P U 2  + 44,. l j 2  - (&u2 + &),- lj2 - i(A,+ 112 - A , -  1 A p , ,  l ,2 + p,- 1 2 )  = 0 

Similarly, at node ( j  - I), 

(Apu2 + A p ) ~ - l j z - ( ~ p u ~  + Ap),-3/2-~(A,-1/2-A,-3,2)(P~-1/2 + P , - 3 / 2 ) = O  (I9) 
Subtracting (1 8) from (19), a tridiagonal matrix for the pressure is obtained. With the pressure and 
velocity known, the density can be determined from the energy equation (15). 

The boundary conditions for the tridiagonal system are the prescribed exit pressure and a 
Neumann condition at the inlet in the form of equation (18), assuming the density p and the speed u 
to be lagged from the previous iteration. 

Similarly, a finite element implementation is straightforward, especially that the Neumann 
condition for pressure in this case turns out to be the natural boundary condition of the system. 
This interesting point is important and will be demonstrated in the next section on 2-D flows. 

Numerical results for the nozzle problem of Figure l(b) are presented in Figure l(c) and 
compared to the exact Euler solution. 

Two-dimensional flows: non-lijtiny aerofoils 

using the present formulation. The governing equations are 
Transonic flows around a symmetric (NACA 0012) aerofoil at zero angle of attack are calculated 
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Figure l(a). Finite Difference Grid for a Quasi-ID Calculation 
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Figure l(b). Nozzle Shape for Quasi-1D Calculations 
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Figure l(c). Mach Number Distribution in Nozzle 

V.(pv@) = 0, 

V2P = - (PU"), - ( P u 4 y x  - (Puc')xy - (PV2), ,  = f x  + g y ,  

P x  = - c(PuZ)x  + (PU%l = .f, 
P y  = - c (PO2),  + (PU4Xl = 9. 

obtained by taking the divergence of the x and y momentum equations: 
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The losses P ,  are obtained by calculating the ratio of the pressure from equation (21a) to the 
ideal pressure, 

(224 

and the density is calculated as 

J 

Equation (21a) is of mixed type since the right-hand side can be written as M2p,, + f ( p ,  u, v); hence 

To understand the boundary conditions on equation (21a), it is useful to demonstrate the finite 
element or weighted residual discretization of the equation. Multiplying by a weight function W ,  
and integrating over the solution domain: 

I - I -  

Integrating by parts yields 
I- I- 

The contour integrals are nothing but the momentum equations (21b, c) that must vanish. Over 
any contours where p is not specified, say over the aerofoil or at the exit, the natural boundary 
condition is the vanishing of the contour integral. Far upstream the pressure is taken to be pm. 

It is assumed here that a fine mesh in the neighbourhood of a shock is used and hence, owing to 
the effect of the artificial viscosity in the velocity calculations, the pressure is considered to be a 
continuous function with a large gradient. This means that a shock will be smeared over a number 
of elements and that sharp shocks must be calculated using fine meshes, as in most conservative 
calculations. One might comment that in the classical potential conservative calculation sharp 
shocks are sometimes captured within very few elements; for example, normal shocks are captured 
in two elements because, in this case, shock capturing methods are very close to shock fitting.6 For 
oblique supersonic/supersonic shocks, however, in all the existing conservative potential 
calculations as well as in Euler calculations shocks are smeared over many elements. 

To solve equation (20), the artificial compressibility method can be easily applied. Necessary 
modifications to guarantee the convergence of standard relaxation procedures for mixed-type 
equations, independent of the artificial viscosity, are also needed as discussed in the same reference. 
Numerical results based on the proposed formulation are shown in Figure 2 for subsonic flows and 
compared to the classical potential solution; the agreement is excellent. Bilinear four-node finite 
elements are used for all two-dimensional calculations. 

In Figure 3, results for transonic flows are demonstrated for M ,  = 0.85. The shock in the present 
calculation is weaker and is positioned upstream of the isentropic shock. There is, however, a slight 
discrepancy between the two solutions in the smooth acceleration region upstream of the shock 
due to the numerical accuracy in the calculations of the losses. In the present computations, owing 
to computer core limitations, only 896 elements are used with 45 points on the aerofoil. Better 
agreement in this region is expected if finer meshes were used. 
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Figure 2. FEM Solution of Subsonic Non-lifting Flow around NACA 0012 aerofoil, M ,  =0.72, Classical Potential and 
New Potential 

Two-dimensional ,paws: lifiing aerofoils 

In the classical potential lifting formulation, a jump in (A@) must be imposed across a cut while 
pressure, density and speed are continuous across this cut. On the other hand, in the Euler 
calculations only the pressure is continuous across the wake, whereas the density and the 
tangential velocity have a jump (contact discontinuity). 

In the present model, the wake is treated as in the potential calculations: the circulation r = A@ 
is determined such that at the trailing edge, the speeds (qUJ at the upper surface and (qJ at the 
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Figure 3. FEM Solution of Transonic Non-lifting Flow around NACA 0012 aerofoil, M,m = 0.85, Classical Potential and 
New Potential 
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lower surface are equal. The following iterative procedure is used: 

where p is a properly chosen relaxation parameter. The far field behaviour consists of a vortex of 
strength proportional to r = A@. 

For subsonic flows, the results of the present model agree very well with the classical potential 
solution as shown in Figures 4 and 5. 

r n +  = r n  + p(qUp - q , ~ ,  (27) 

- Classical Potential, 91 - New Potential, Qand p 

1.2 r 

l . O  .8 t 
I 0 -  I 

Percent chord 
0 20 40 60 80 100 

Figure 4. FEM Solution of Subsonic Lifting Flow around NACA 0012 aerofoil, M ,  = 0.5, s( = lo ,  Classical Potential and 
New Potential 
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Figure 5. FEM Solution of Subsonic Lifting Flow around NACA 0012 aerofoil, M ,  = 0.3, a = lo” Classical Potential and 
New Potential 
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If shocks develop, at higher free-stream Mach numbers and/or higher angles of attack, the 
present results should agree with neither the potential nor the Euler solutions. In Figure 6, the 
surface Mach number distribution is shown for M ,  = 0.83 and a = 01". At this latter condition, 
the classical potential solution is not The non-isentropic model produces however a 
unique solution as discussed in Reference 5. The present conservative calculations are shown in 
Figure 7 superposed on a Figure from Reference 8. It seems that in these calculations, as well as in 
the shock fitting calculations of Reference 4, the non-uniqueness problem discovered by Steinhoff 
and Jameson' is circumvented, at  least for this numerical example. 
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Figure 6 .  FEM Solution of Transonic Lifting Flow around NACA 0012 aerofoil, M ,  = 0.83, a = 0.1", Classical Potential 
and New Potential 
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Figure 7. Lift Characteristics of NACA 0012 from Reference 8 and the New Potential Results. 
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CONCLUDING REMARKS 

Conservative calculations of non-isentropic flows are demonstrated using a modified potential 
formulation and a second-order mixed-type equation for the pressure. The pressure equation is 
demonstrated to have very simple boundary conditions. Examples of lifting aerofoils at transonic 
speeds are shown. The non-isentropic effects are sometimes appreciable and in some cases are 
crucial for obtaining a unique solution. 

Applications of the present method to other aerodynamic configurations, for example internal 
turbomachinery flows, are in progress. If the vorticity effects are important, the present 
formulation can be extended to allow for rotational flows using a perturbation stream function of 
similar form to the potential equation. In this case the vorticity has to be calculated in terms of the 
gradient of losses normal to the streamline direction and such calculations would thus be 
equivalent to solving the Euler equations. 
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NOMENCLATURE 

= nozzle area 
= speed of sound 
= aerofoil chord 
= lift coefficient 
= mass flux 
= enthalpy 
= Mach number 
= momentum 
= static pressure 
= total pressure loss 
= velocity, J(u2 + u 2 )  
= gas constant 
= entropy 
= velocity components 
= Cartesian co-ordinates 
= angle of attack 
= relaxation factor 
= isentropic exponent 
= circulation 
= increment 
= density 
= perturbation potential 
= full potential 
= artificial viscosity coefficient 
= vorticity 
= aerofoil thickness ratio 
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Subscripts 

d = downstream 
e = element 
e -  1 = upstream element 
i = ideal 
j = nodal 
j + $ , , j  - $ = mid-cell 
lo 
s, n 
U = upstream 
UP 
x, Y 
a3 = free-stream condition 

= trailing edge, lower surface 
= streamline direction and normal to it, respectively 

= trailing edge, upper surface 
= differentiation, w.r.t. x and y 

Superscripts 
* = sonic 
‘v = artificial density 

Other symbols 

[ I  
0 

=jump of quantity across shock 
= average of quantity across shock 
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